2. Structure and Stability

\[\Psi_A - 2 \rho_x = D \]

\[\Psi_B - 2s = C \]

\[\Psi_A + 2 \rho_x = B \]

\[\Psi_B + 2s = A \]
9 Kcal/mol
The diagram represents an energy level diagram with the following labels:

- **S\(_1\)**: A state labeled with an 8–10 kcal/mol energy difference above the ground state.
- **T\(_1\)**: Another state.
- **singlet** and **triplet**: States with different multiplicity labels.

The diagram indicates the energy transitions and levels, showing the difference between singlet and triplet states.
alkyl groups such as methyl can help stabilize the **singlet** through a **hyperconjugative interaction** with the empty 2p orbital.

Sterically demanding groups, for example, phenyl, tert-butyl, or adamantyl, should favor the **triplet state** by demanding a wide R-C-R angle.

Atoms with nonbonding electrons that can donate those electrons into the empty 2p orbital of a **singlet** are especially effective at producing ground-state **singlets**. Difluorocarbene, :CF₂:, is a classic example.
Ground States for Typical Carbenes

<table>
<thead>
<tr>
<th>Carbene</th>
<th>Ground State</th>
</tr>
</thead>
<tbody>
<tr>
<td>:CH₂</td>
<td>Triplet</td>
</tr>
<tr>
<td>:CR₂</td>
<td>Singlet or triplet</td>
</tr>
<tr>
<td>HČCOOR</td>
<td>Triplet</td>
</tr>
<tr>
<td>:C(COOR)₂</td>
<td>Triplet</td>
</tr>
<tr>
<td>:C(C₆H₅)₂</td>
<td>Triplet</td>
</tr>
<tr>
<td>:CAr₂</td>
<td>Triplet</td>
</tr>
<tr>
<td>HČC₆H₅</td>
<td>Triplet</td>
</tr>
<tr>
<td>:CX₂ (X=F, Cl, Br, I)</td>
<td>Singlet</td>
</tr>
<tr>
<td>HČX</td>
<td>Singlet</td>
</tr>
<tr>
<td>:C(OR)₂</td>
<td>Singlet</td>
</tr>
<tr>
<td>:C(NR₂)₂</td>
<td>Singlet</td>
</tr>
</tbody>
</table>
In many cases the two reactive intermediates are very close in energy.

<table>
<thead>
<tr>
<th>Carbene</th>
<th>Singlet–Triplet Gap</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>:CH₂</td>
<td>9</td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Experiment</td>
</tr>
<tr>
<td>:CHCH₃</td>
<td>3–5</td>
<td>Theory</td>
</tr>
<tr>
<td>:C(CH₃)₂</td>
<td>−1.4</td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td>−1.6</td>
<td>Theory</td>
</tr>
<tr>
<td>HĆC₆H₅</td>
<td>2.5</td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>Experiment</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>Theory</td>
</tr>
<tr>
<td>:CF₂</td>
<td>−57</td>
<td>Experiment</td>
</tr>
</tbody>
</table>

\(^a\) In kcal/mol; positive value indicates triplet ground state.
- Similarly, nitrenes can exist as triplet or singlet.

- Additionally, nitrenes can be protonated to give nitrenium ions that are isoelectronic with carbenes.

\[\text{singlet} \quad \text{nitrenium ion} \]
In order to establish if these intermediates react as singlet or triplet, Skell and Woodworth proposed a "test" that relied on the stereospecificity of the addition of carbenes and nitrenes to alkenes.

JACS 1956, 78, 4496
3. Generation of carbenes and nitrenes

Carbenes and nitrenes are most commonly formed by α-elimination or fragmentation of appropriate precursors.

Carbenes and Nitrenes are common reactive intermediates in a number of classic reactions:

Reimer-Thieman reaction:

\[
\begin{align*}
\text{OH} & \quad \text{H} \quad \text{Cl}_2 \text{C} \quad \text{Cl} \\
\text{KOH} & \quad \xrightarrow{\text{OK}} \quad \text{Cl} \quad \text{Cl} \\
\text{OH} & \quad \text{Cl} \quad \text{Cl} \\
\end{align*}
\]
Bamfords-Stevens reaction:

\[
\begin{align*}
\text{Ts} & \xrightarrow{\text{NaOMe}} \text{N} = \text{N} \cdot \cdot \cdot \\
\text{N} \cdot \cdot \cdot & \xrightarrow{\text{H}} \text{N} \cdot \cdot \cdot \\
\text{N} \cdot \cdot \cdot & \xrightarrow{\text{H}} \text{N} \cdot \cdot \cdot \\
\end{align*}
\]

in aprotic medium: carbene mechanism preferred

Diazirines (for photoaffinity labelling)

\[
\begin{align*}
\text{N}=\text{N} & \xrightarrow{\Delta T \ \text{or} \ \text{hv}} \text{N}=\text{N} \\
\text{R} & \xrightarrow{\text{Protein} \cdot \cdot \cdot} \text{R} \\
\end{align*}
\]
Arylazides (for photoaffinity labelling)

\[
\begin{align*}
&\text{R} &\text{N}_3 &\xrightarrow{\text{hv}} &\text{R} &\text{N}^* \\
&\text{R} &\xrightarrow{\text{Protein-H}} &\text{R} &\text{N}^- &\text{Protein}
\end{align*}
\]

Arndt-Eistert homologization:

\[
\begin{align*}
&\text{O} &\text{N}_2 &\xrightarrow{\text{AgOR}} &\text{O} \\
&\text{O} &\xrightarrow{\text{ROH}} &\text{OR}
\end{align*}
\]

Hoffman-Degradation and Lossen-Schmidt-Reaction

\[
\begin{align*}
&\text{N} &\text{Br} &\xrightarrow{\text{R}} &\text{O} &\text{N}^* \\
&\text{O} &\xrightarrow{\text{ROH}} &\text{N}^- &\text{OR}
\end{align*}
\]
Doering-LaFlamme allene synthesis:

\[\begin{array}{ccc}
\text{Br} & \text{Br} \\
R & R \\
\text{or} & \\
H & \text{Br} \\
R & R \\
\end{array} \]

\[\xrightarrow{nBuLi} \]

\[\text{Li} \]

\[\text{Br} \]

\[\xrightarrow{\text{rot.}} \]

\[R \]

\[C \]

\[C=\]

\[R \]

a **carbenoid**

(*vide infra*)

Corey-Winter olefination:

\[\begin{array}{ccc}
\text{S} \\
\text{O} & \text{O} \\
R & R \\
\end{array} \]

\[\xrightarrow{\text{PPh}_3} \]

\[\text{O} \]

\[\text{S} \]

\[\text{PPh}_3 \]

\[\xrightarrow{\text{rot.}} \]

\[R \]

\[R \]

\[\text{CO}_2 \]

\[R \]

\[\equiv \]

\[R \]