Probability of having n^{th}-roots and n-centrality of two classes of groups

M. Hashemi*, M. Polkouei*

Faculty of Mathematical Sciences, University of Guilan, P.O.Box 41335-19141, Rasht, Iran.

Received 8 December 2015; Revised 28 March 2016; Accepted 15 April 2016.

Abstract. In this paper, we consider the finitely 2-generated groups $K(s, l)$ and G_m as follows;

$K(s, l) = \langle a, b | ab^s = b^l a, ba^s = a^l b \rangle$;

$G_m = \langle a, b | a^m = b^m = 1, [a, b]^n = [a, b], [a, b]^b = [a, b] \rangle$

and find the explicit formulas for the probability of having n^{th}-roots for them. Also we investigate integers n for which, these groups are n-central.

© 2016 IAUCTB. All rights reserved.

Keywords: Nilpotent groups, n^{th}-roots, n-central groups

2010 AMS Subject Classification: 20D15, 20P05.

1. Introduction

Let $n > 1$ be an integer. An element a of group G is said to have an n^{th}-root b in G, if $a = b^n$. The probability that a randomly chosen element in G has an n^{th}-root, is given by

$$P_n(G) = \frac{|G^n|}{|G|}$$
where $G^n = \{ a \in G | a = b^m, \text{ for some } b \in G \} = \{ x^n | x \in G \}$. In [5], the probability $P_n(G)$ for Dihedral groups D_{2n} and Quaternion groups Q_{2n} for every integer $m \geq 3$ have been calculated. Also, in [4] the probability that Hamiltonian groups may have n^{th}-roots have been calculated. For $n > 1$, a group G is said to be n-central if $[x^n, y] = 1$ for all $x, y \in G$. In [6], some aspects of n-central groups have been investigated.

First, we state the following Lemma without proof.

Lemma 1.1 If G is a group and $G' \subseteq Z(G)$, then the following hold for every integer k and $u, v, w \in G$:

(i) $[uv, w] = [u, w][v, w]$ and $[u, vw] = [u, v][u, w]$;

(ii) $[u^k, v] = [u, v]^k = [u, v]^k$;

(iii) $(uv)^k = u^kv^k[u, v]^{k(k-1)/2}$.

Now, we state some lemmas which can be found in [1, 2].

Lemma 1.2 The groups $K(s, l) = \langle a, b | ab^s = b^l a, ba^s = a^l b \rangle$ where $(s, l) = 1$, have the following properties:

(i) $|K(s, l)| = |l - s|^3$, if $(s, l) = 1$ and is infinite otherwise;

(ii) if $(s, l) = 1$ then $|a| = |b| = (l - s)^2$;

(iii) if $(s, l) = 1$, then $a^{l-s} = b^{s-l}$.

Lemma 1.3 (i) For every $l \geq 3$, $K(s, l) \cong K(1, 2 - l)$.

(ii) For every $i \geq 2$ and $(s, i) = 1$, $K(s, s + i) \cong K(1, i + 1)$.

Note that if $(s, l) = 1$, then $K(s, l) \cong K(1, l - s + 1)$ which we can write as K_m where $m = l - s + 1$.

Lemma 1.4 Every element of K_m can be uniquely presented by $x = a^\beta b^\gamma a^{(m-1)\delta}$, where $1 \leq \beta, \gamma, \delta \leq m - 1$.

Lemma 1.5 In K_m, $[a, b] = b^{m-1} \in Z(K_m)$.

The following lemma can be seen in [3].

Lemma 1.6 Let $G_m = \langle a, b | a^m = b^m = 1, [a, b]^n = [a, b], [a, b]^b = [a, b] \rangle$ where $m \geq 2$, then we have

(i) every element of G_m can be uniquely presented by $a^ib^j[a, b]^t$, where $1 \leq i, j, t \leq m$.

(ii) $|G_m| = m^3$.

In this paper, we consider the groups K_m and G_m which are nilpotent groups of nilpotency class two. In section 2, we compute the probability of having n^{th}-root of K_m and G_m. Section 3 is devoted to finding integers n for which, K_m and G_m are n-central.

2. The probability of having n^{th}-roots

In this section we consider groups K_m and G_m and find the probability of having n^{th}-roots. Here for $m \in \mathbb{Z}$, by m^* we mean the arithmetic inverse of m.

Proposition 2.1 For integers $m, n \geq 2$;

(1) If $G = K_m$ and $x \in G$, then we have

$$x^n = a^{\beta n} b^{n\gamma} a^{(m-1)(n\delta + \frac{n(n-1)\beta\gamma}{2})},$$
(2) If $G = G_m$ and $x \in G$, then we have
\[x^n = a^{n^2 b^m} a^{(m-1)(n\delta + \frac{n(n-1)}{2} \beta \gamma)}. \]

Proof. We use an induction method on n. By Lemma 1.4, the assertion holds for $n = 1$. Now, let
\[x^n = a^{n\beta} b^{n\gamma} a^{(m-1)(n\delta + \frac{n(n-1)}{2} \beta \gamma)}. \]
Then
\[x^{n+1} = a^{n\beta} b^{n\gamma} a^{(m-1)(n\delta + \frac{n(n-1)}{2} \beta \gamma)} = a^{(n+1)\beta} b^{(n+1)\gamma} a^{(m-1)((n+1)\delta + \frac{n(n+1)}{2} \beta \gamma)}. \]

By Lemma 1.2, $a^{(m-1)\delta} = b^{(1-m)\delta}$. So
\[x^{n+1} = a^{(n+1)\beta} b^{(n+1)\gamma} a^{(m-1)((n+1)\delta + \frac{n(n+1)}{2} \beta \gamma)}. \]
Since K_m is a group of nilpotency class two, $G' \subseteq Z(G)$. Hence by Lemma 1.1 we have
\[x^{n+1} = a^{(n+1)\beta} b^{(n+1)\gamma} a^{(m-1)((n+1)\delta + \frac{n(n+1)}{2} \beta \gamma)}. \]
The second part can be proved similarly. \blacksquare

Theorem 2.2 Let $G = K_m$, where $m \geq 2$. Then
\[P_n(G) = \begin{cases} \frac{d}{2} & \text{if } n \text{ be even, } \left(\frac{n}{2}, m-1 \right) = \frac{d}{2} \text{ and } \frac{m-1}{d} \text{ be odd;} \\ \frac{d}{2} & \text{otherwise,} \end{cases} \]
where $(n, m-1) = d$.

Proof. Let $a^{\beta} b^{\gamma} a^{(m-1)\delta}$ be an element of G^n where $1 \leq \beta, \gamma, \delta \leq m-1$. If $x = (x_1)^n$ when $a^{\beta_1} b^{\gamma_1} a^{(m-1)\delta_1} \in G$, $1 \leq \beta_1, \gamma_1, \delta_1 \leq m-1$, then by Proposition 2.1 we have
\[a^{\beta} b^{\gamma} a^{(m-1)\delta} = (a^{\beta_1} b^{\gamma_1} a^{(m-1)\delta_1})^n = a^{n\beta_1} b^{n\gamma_1} a^{(m-1)(n\delta_1 + \frac{n(n-1)}{2} \beta_1 \gamma_1)}. \]

By uniqueness of presentation of G, we obtain
\[\begin{cases} n\beta_1 \equiv \beta \pmod{m-1} \\ n\gamma_1 \equiv \gamma \pmod{m-1} \\ n\delta_1 + \frac{n(n-1)}{2} \beta_1 \gamma_1 \equiv \delta \pmod{m-1} \end{cases} \quad (1) \]
Now let $(n, m-1) = d$. The first congruence of the system (1) has the solution
\[\beta_1 \equiv \left(\frac{n}{d} \right)^* \left(\frac{\beta}{d} \right) \pmod{\frac{m-1}{d}}. \]
if and only if $d \mid \beta$. Then
\[
\beta \in \{d, 2d, \ldots, \frac{m-1}{d} \times d\}.
\]
This means that β has $\frac{m-1}{d}$ choices. Similarly, by second equation of System (1) we get
\[
\gamma \in \{d, 2d, \ldots, \frac{m-1}{d} \times d\}.
\]
So γ admits $\frac{m-1}{d}$ values.

Now for finding the number of values of δ, we consider two cases, where n is odd or even.

First let n be an odd integer. Then
\[
n(\delta_1 + \frac{n(n-1)}{2} \beta_1 \gamma_1) \equiv \delta \pmod{m-1}.
\]
Since $(n, m-1) = d$, we get
\[
\delta_1 \equiv (\frac{n}{d})^* \frac{\delta}{d} - \frac{n(n-1)}{2} \beta_1 \gamma_1 \pmod{\frac{m-1}{d}}
\]
provided that $d \mid \delta$. So
\[
\delta \in \{d, 2d, \ldots, \frac{m-1}{d} \times d\}.
\]
Therefore in this case we have $\frac{m-1}{d}$ choices for δ. By the above facts, we have
\[
|G^n| = |\{a^\beta b^\gamma d^{(m-1)\delta} \mid \beta \in \{d, \ldots, \frac{m-1}{d} \times d\}, \gamma \in \{d, \ldots, \frac{m-1}{d} \times d\}, \delta \in \{d, \ldots, \frac{m-1}{d} \times d\}\}|
\]
\[
= |\{\beta, \gamma, \delta \mid \beta \in \{d, \ldots, \frac{m-1}{d} \times d\}, \gamma \in \{d, \ldots, \frac{m-1}{d} \times d\}, \delta \in \{d, \ldots, \frac{m-1}{d} \times d\}\}|
\]
\[
= \frac{m-1}{d} \times \frac{m-1}{d} \times \frac{m-1}{d} = (\frac{m-1}{d})^3.
\]

So
\[
P_n(G) = \frac{|G^n|}{|G|} = \frac{(m-1/d)^3}{(m-1)^3} = \frac{1}{d^3}.
\]

Now suppose n be an even integer. Then $(\frac{n}{2}, m-1) = d$ or $(\frac{n}{2}, m-1) = \frac{d}{2}$.

Case 1. Let $(\frac{n}{2}, m-1) = d$. Then
\[
\frac{n}{2}(2\delta_1 + (n-1)\beta_1 \gamma_1) \equiv \delta \pmod{m-1}.
\]

So
\[
2\delta_1 \equiv \frac{n}{2d} \frac{\delta}{d} - (n-1)\beta_1 \gamma_1 \pmod{\frac{m-1}{d}}.
\]
Since \((\frac{n}{2}, m-1) = d\), \(\frac{m-1}{d}, 2 \Rightarrow 1\). Hence, the above congruence holds if and only if
\(d \mid \delta\). Therefore

\[
\delta \in \{d, 2d, \ldots, \frac{m-1}{d} \times d\}.
\]

So

\[
|G^n| = |\{(\beta, \gamma, \delta) | \{\beta \in \{d, \ldots, \frac{m-1}{d} d\}, \gamma \in \{d, \ldots, \frac{m-1}{d} d\}, \delta \in \{d, \ldots, \frac{m-1}{d} d\}\}|
\]

\[
= \left(\frac{m-1}{d}\right)^3
\]

and consequently

\[
P_n(G) = \frac{1}{d^3}
\]

Case 2. Let \((\frac{n}{2}, m-1) = \frac{d}{2}\). Then

\[
\frac{n}{d}(2\delta_1 + (n-1)\beta_1 \gamma_1) \equiv \frac{2\delta}{d} \pmod{\frac{2(m-1)}{d}}.
\]

Hence

\[
2\delta_1 \equiv \frac{n}{d} \frac{2\delta}{d} - (n-1)\beta_1 \gamma_1 \pmod{\frac{2(m-1)}{d}}. \quad (2)
\]

So, we must have \(2 \mid \beta_1 \gamma_1\). Suppose \(2 \mid \gamma_1\). Now by congruence

\[
\gamma_1 \equiv \left(\frac{n}{d}\right)^* \frac{\gamma}{d} \pmod{\frac{m-1}{d}} \quad (3)
\]

we consider two subcases:

Subcase 2.a. Let \(\frac{(m-1)}{d}\) be an even integer. Now since

\[
\frac{n}{d}\left(\frac{n}{d}\right)^* \equiv 1 \pmod{\frac{m-1}{d}},
\]

both \(\frac{n}{d}\) and \(\left(\frac{n}{d}\right)^*\) are odd. Since \(2 \mid \gamma_1\), By congruence \((3)\) we get \(2 \mid \frac{\gamma}{d}\). It means that

\[
\gamma \in \{2d, 4d, \ldots, \frac{m-1}{2d} \times 2d\}.
\]

Hence the number of values of \(\gamma\) is \(\frac{m-1}{2d}\). On the other hand according to congruence \((2)\),
\(\frac{d}{2} \mid \delta\). Therefore

\[
\delta \in \left\{\frac{d}{2}, d, \ldots, \frac{2(m-1)}{d} \times \frac{d}{2}\right\}.
\]
So \(\delta \) admits \(\frac{2(m-1)}{d} \) values. Consequently
\[
|G^n| = \frac{m-1}{d} \times \frac{m-1}{2d} \times \frac{2(m-1)}{d} = \left(\frac{m-1}{d} \right)^3
\]
and
\[
P_n(G) = \frac{1}{d^3}.
\]

Case 2.b. Let \(\frac{m-1}{d} \) be an odd integer and \(\gamma \in \{d, 2d, \ldots, \frac{m-1}{d}d\} \). If \(\gamma_1 \equiv \frac{n}{d} (mod \frac{m-1}{d}) \) and \(\gamma_1 \) be an even integer, then we get the desired result. Otherwise, instead of \(\gamma_1 \), we put \(\gamma_1 + \frac{m-1}{d} \). So for each
\[
\gamma \in \{d, 2d, \ldots, \frac{m-1}{d} \times d\},
\]
the congruence holds. It means that the number of choices for \(\gamma \) is equal to \(\frac{m-1}{d} \). Finally, we get
\[
|G^n| = \frac{m-1}{d} \times \frac{m-1}{d} \times \frac{2(m-1)}{d} = 2\left(\frac{m-1}{d} \right)^3
\]
and
\[
P_n(G) = \frac{2}{d^3}.
\]

Theorem 2.3 Let \(G = G_m \), where \(m \geq 2 \). Then
\[
P_n(G) = \begin{cases}
\frac{2}{d^3} & \text{if } n \text{ be even, } \left(\frac{n}{2}, m \right) = \frac{d}{2} \text{ and } \frac{m}{d} \text{ be odd;} \\
\frac{1}{d^3} & \text{otherwise},
\end{cases}
\]
where \((n, m) = d \).

Proof. Let \(a^i b^j [a, b]^t \) be an element of \(G^n \) where \(1 \leq i, j, t \leq m \). If \(x = (x_1)^n \) when \(a^{i_1} b^{j_1} [a, b]^{t_1} \in G, 1 \leq i_1, j_1, t_1 \leq m \), then by Proposition 2.1 we have
\[
a^i b^j [a, b]^t = (a^{i_1} b^{j_1} [a, b]^{t_1})^n
= a^{ni_1} b^{nj_1} [a, b]^{nt_1 - \frac{n(n-1)}{2} i_1 j_1}.
\]
By uniqueness of presentation of \(G \), we obtain
\[
\begin{align*}
ni_1 & \equiv i \pmod{m} \\
nj_1 & \equiv j \pmod{m} \\
nt_1 - \frac{n(n-1)}{2} i_1 j_1 & \equiv t \pmod{m}.
\end{align*}
\]
The obtained congruence system is exactly similar to System (1). So it can be solve, similarly.

3. \textit{n}-centrality

In this section, we again consider groups K_m, G_m and investigate \textit{n}-centrality for them.

Theorem 3.1 Let $G = K_m$, where $m \geq 2$. Then for $n > 1$, the group G is \textit{n}-central if and only if $m - 1 | n$.

Proof. By Proposition 2.1 and Lemma 1.1, we get

$$x^n y = a^{n\delta_1 + \beta_1 b^{\gamma_1} + \gamma_2} a^{(m-1)(n\delta_1 + \delta_2 + \frac{n(n-1)}{2}\beta_1 \gamma_1 + n\beta_2 \gamma_1)}.$$

Also we obtain

$$yx^n = a^{n\delta_1 + \beta_2 b^{\gamma_1} + \gamma_2} a^{(m-1)(n\delta_1 + \delta_2 + \frac{n(n-1)}{2}\beta_1 \gamma_1 + n\beta_1 \gamma_2)}.$$

We know that G is \textit{n}-central if and only if $x^n y = yx^n$, for all $x, y \in G$. Furthermore by uniqueness of presentation of $x^n y$ and yx^n, we see that $x^n y = yx^n$ if and only if

$$n\delta_1 + \delta_2 + \frac{n(n-1)}{2}\beta_1 \gamma_1 + n\beta_2 \gamma_1 \equiv n\delta_1 + \delta_2 + \frac{n(n-1)}{2}\beta_1 \gamma_1 + n\beta_1 \gamma_2 \pmod{m - 1}.$$

This is equivalent to

$$n(\beta_1 \gamma_2 - \beta_2 \gamma_1) \equiv 0 \pmod{m - 1}.$$

Now since this holds for all $x, y \in G$, $m - 1 | n$.

Theorem 3.2 Let $G = G_m$, where $m \geq 2$. Then for $n > 1$, the group G is \textit{n}-central if and only if $m | n$.

Proof. By Proposition 2.1 and Lemma 1.1, we get

$$x^n y = a^{ni_1 + i_2 b^{nj_1 + j_2}} [a, b]^{nt_1 + t_2 - \frac{n(n-1)}{2}i_1 j_1 - ni_1 j_1}.$$

Also we obtain

$$yx^n = a^{ni_1 + i_2 b^{nj_1 + j_2}} [a, b]^{nt_1 + t_2 - \frac{n(n-1)}{2}i_2 j_2 - ni_2 j_2}.$$

We know that G is \textit{n}-central if and only if $x^n y = yx^n$, for all $x, y \in G$. Furthermore by uniqueness of presentation of $x^n y$ and yx^n, we see that $x^n y = yx^n$ if and only if

$$nt_1 + t_2 - \frac{n(n-1)}{2}i_1 j_1 - ni_1 j_1 \equiv nt_1 + t_2 - \frac{n(n-1)}{2}i_2 j_2 - ni_2 j_2 \pmod{m}.$$

This is equivalent to

$$n(i_1 j_2 - i_2 j_1) \equiv 0 \pmod{m}.$$

Now since this holds for all $x, y \in G$, $m | n$.

References